Transference and restriction of Fourier multipliers on Orlicz spaces

نویسندگان

چکیده

Let G be a locally compact abelian group with Haar measure m $m_G$ and Φ 1 , 2 $\Phi _1,\,\Phi _2$ Young functions. A bounded measurable function on is called Fourier ( ) $(\Phi _2)$ -multiplier if T f γ = ∫ x ̂ d $$\begin{equation*}\hskip7pc T_m (f)(\gamma )= \int _{G} m(x) \hat{f}(x) \gamma (x) dm_G(x),\hskip-7pc \end{equation*}$$ defined for functions in ∈ L $f\in L^1(\hat{G})$ such that $\hat{f}\in L^1(G)$ extends to operator from $L^{\Phi _1}(\hat{G})$ _2}(\hat{G})$ . We write M $\mathcal {M}_{\Phi _1,\Phi _2}(G)$ the space of -multipliers study some properties this class. give necessary sufficient conditions various groups as R D Z $\mathbb {R},\, {\bf D},\, \mathbb {Z}$ {T}$ In particular, we prove regulated {R}$ coincide real line discrete topology D, under certain assumptions involving norm dilation acting Orlicz spaces. Also, several transference restriction results multipliers are achieved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutators for Fourier multipliers on Besov Spaces

The mapping properties of commutators [T,M ] = TM −MT , for operators between function spaces, and their various generalizations play an important role in harmonic analysis, PDE, interpolation theory and other related areas. A typical situation arises when M = Mb is the pointwise multiplication by a function b and T is a Calderón–Zygmund operator on R. Then well– known results of A.P. Calderón ...

متن کامل

Fourier Multipliers on Weighted L-spaces

In his 1986 paper in the Rev. Mat. Iberoamericana, A. Carbery proved that a singular integral operator is of weak type (p, p) on Lp(Rn) if its lacunary pieces satisfy a certain regularity condition. In this paper we prove that Carbery’s result is sharp in a certain sense. We also obtain a weighted analogue of Carbery’s result. Some applications of our results are also given.

متن کامل

Bilinear multipliers and transference

(defined for Schwarzt test functions f and g in ) extends to a bounded bilinear operator from Lp1 (R)×Lp2 (R) into Lp3 (R). The theory of these multipliers has been tremendously developed after the results proved by Lacey and Thiele (see [16, 18, 17]) which establish that m(ξ,ν) = sign(ξ +αν) is a (p1, p2)-multiplier for each triple (p1, p2, p3) such that 1 < p1, p2 ≤∞, p3 > 2/3, and each α∈R \...

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Transference Results for Multipliers, Maximal Multipliers and Transplantation Operators Associated with Fourier-bessel Expansions and Hankel Transform

Our objective in this survey is to present some results concerning to transference of multipliers, maximal multipliers and transplantation operators between Fourier-Bessel series and Hankel integrals. Also we list some related problems that can be interesting and that have not been studied yet. From August 31st to September 3rd, 2004, was held in Merlo (San Luis, Argentine) the congress ”VII En...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2023

ISSN: ['1522-2616', '0025-584X']

DOI: https://doi.org/10.1002/mana.202200315